
• Defining methods
The method is a function that is associated with an object. In Python, a method is not
unique to class instances. Any object type can have methods.

• Differences between functions and methods
Python Method

• Method is called by its name, but it is associated to an object (dependent).
• A method is implicitly passed the object on which it is invoked.
• It may or may not return any data.
• A method can operate on the data (instance variables) that is contained by

the corresponding class
Basic Method Structure in Python :

Basic Python method
class class_name
 def method_name () :

 # method body

Example:
class myclass:
 def first(self):
 print("i am in first method of myclass Class")

mc=myclass()
mc.first()

output:
i am in first method of myclass Class

Functions
• Function is block of code that is also called by its name. (independent)
• The function can have different parameters or may not have any at all. If any data

(parameters) are passed, they are passed explicitly.
• It may or may not return any data.
• Function does not deal with Class and its instance concept.

Syntax:
def function_name (arg1, arg2, ...) :

 # function body

Example:
def Subtract (a, b):
 return (a-b)

 print(Subtract(10, 12))
 print(Subtract(15, 6))
Difference between method and function

• Simply, function and method both look similar as they perform in almost similar
way, but the key difference is the concept of ‘Class and its Object‘.

• Functions can be called only by its name, as it is defined independently. But
methods can’t be called by its name only, we need to invoke the class by a
reference of that class in which it is defined, i.e. method is defined within a class
and hence they are dependent on that class.

• Instance method
Instance methods are the most common type of methods in Python classes. These are so
called because they can access unique data of their instance.

Example:

class student:
 clg= "JNTUK"
 def __init__(self, name, age):
 self.name= name
 self.age= age

 def info(self):
 print("name:",self.name ,"age:",self.age)
s1=student("naveen",23)
s1.info()

output:
name: naveen age: 23

• Static method
Static methods are methods that are related to a class in some way, but don’t need to
access any class-specific data. You don’t have to use self, and you don’t even need to
instantiate an instance, you can simply call your method:

static methods are created using the @staticmethod decorator.

• Class method
• Class methods don’t need self as an argument, but they do need a parameter
called cls. This stands for class, and like self, gets automatically passed in by Python.

• Class methods are created using the @classmethod decorator.

Example:

class student:
 clg= "JNTUK"
 def __init__(self, name, age):
 self.name= name
 self.age= age

 def info(self):
 print("name:",self.name ,"age:",self.age)

 @classmethod
 def college(cls):
 return cls.clg

 @staticmethod
 def display(age):
 return age

s1=student("naveen",23)
s1.info()
print(s1.college())
print(s1.display(25))

output:
name: naveen age: 23
JNTUK
25
• Difference static and class methods
• Class method takes cls as first parameter, while static method need no specific

parameters.
• Static methods knows nothing about the class state, while class methods can access and

modify class state.
• @classmethod decorators are used to create class method,@staticmethod decorators are

used to create static method.

